If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+14z+28=0
a = 1; b = 14; c = +28;
Δ = b2-4ac
Δ = 142-4·1·28
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{21}}{2*1}=\frac{-14-2\sqrt{21}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{21}}{2*1}=\frac{-14+2\sqrt{21}}{2} $
| 1+8x+9=-202x | | (h/4)^2*h=108 | | 6/2+8x/2=5x | | 3r-3=2r-2 | | 3x+6-22=0 | | z+37–8=4 | | 10p+p+2p-4p=18 | | 8(y+2)=10y-2y+16 | | 9.50n+(3n*1.25)+2=68.75 | | k+4=44 | | 36-2x=-x-34 | | 2^(x+3)=3x+8 | | (3x+6)^2=22 | | 7v+4=78 | | 15(x-7)=20 | | 9.50n+3(n*1.25+2)=68.75 | | -4.5x-15=-6 | | -2x+5=4+2x | | x+(-89)=37 | | 8(1-5x)+5-5x=13 | | -12.6w-4.9w=-154 | | 4x-3=-5+2x | | 4m-8(-4m+2)=196 | | 21x-1+9x-38=180 | | -108+5x=-7x | | 4x-7x+3x= | | 24(r−977)=384 | | 2.4b-9.1b+12.5b=-39.44 | | 63+16n=335 | | 21y-1=4y+23 | | -3n+2=19 | | -3n+2=-19 |